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Abstract

Within the framework of the well-known curvature models, a fluid lipid
bilayer membrane is regarded as a surface embedded in the three-dimensional
Euclidean space whose equilibrium shapes are described in terms of its
mean and Gaussian curvatures by the so-called membrane shape equation.
In the present paper, all solutions to this equation determining cylindrical
membrane shapes are found and presented, together with the expressions for
the corresponding position vectors, in explicit analytic form. The necessary
and sufficient conditions for such a surface to be closed are derived and several
sufficient conditions for its directrix to be simple or self-intersecting are given.

PACS numbers: 87.16.D−, 02.40.Hw, 02.30.Hq, 02.30.Ik

1. Introduction

By a fluid membrane in this paper we assume a membrane formed in an aqueous solution by a
bilayer of lipid molecules, which are in a fluid state, i.e., the molecules can move freely within
the monolayer they belong to. The structure of the bilayer is such that the hydrophobic tails of
the lipid molecules situated in different monolayers face one another to form a semipermeable
core, while their hydrophilic heads face the aqueous solutions on either side of the membrane.
It is known that the lipid bilayer is the main structural component of all biological membranes,
the closed lipid bilayer membranes (vesicles) being thought of as the simplest model systems
for studying basic physical properties of the more complex biological cells.

The foundation of the current theoretical understanding of the vesicle shapes (see, e.g.,
[20, 30, 31]) can be traced more than thirty years back to the works by Canham [7] and
Helfrich [14], in which the so-called curvature models have been introduced. In these models,
the vesicle’s membrane is regarded as a two-dimensional surface S embedded in the three-
dimensional Euclidean space R

3 and assumed to exhibit purely elastic behaviour described by
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its mean H and Gaussian K curvatures and two material constants associated with the bending
rigidity of the membrane.

In the model proposed by Helfrich [14], currently referred to as the spontaneous-curvature
model, the equilibrium shapes of the vesicles are determined by the extremals of the curvature
(shape) energy

Fc = kc

2

∫
S
(2H + Ih)2 dA + kG

∫
S

K dA

under the constraints of fixed enclosed volume V and total membrane area A. This scheme
yields the functional

F = kc

2

∫
S
(2H + Ih)2 dA + kG

∫
S

K dA + λ

∫
S

dA + p

∫
dV. (1)

Here kc and kG are real constants representing the bending and Gaussian rigidity of the
membrane, Ih is the spontaneous curvature (a constant introduced by Helfrich to reflect
the asymmetry of the membrane or its environment), p and λ are the Lagrange multipliers
(another two real constants) corresponding to the constraints of enclosed volume and total
area, respectively, whose physical meaning is as follows: p represents the pressure difference
between the outer and inner sides of the membrane, while λ is interpreted as a tensile stress
or a chemical potential (see, e.g., [5]). The Euler–Lagrange equation corresponding to the
functional (1) reads

2kc�H + kc(2H + Ih)(2H 2 − IhH − 2K) − 2λH + p = 0, (2)

where � is the Laplace–Beltrami operator on the surface S. This equation, derived in [28],
is often referred to as the membrane shape equation. It is worth noting that the second term
in the curvature energy Fc does not affect equation (2) since its contribution to the overall
Lagrangian density is a total divergence as follows from the Liouville’s form of Gauss’s
Theorema Egregium (see, e.g., [10]). Actually, for closed membranes without edges the
integral over the Gaussian curvature K is a topological invariant by virtue of the Gauss–
Bonnet theorem and therefore it may be disregarded until the topology of the membrane
remains unchanged. This term, however, plays an important role when topological phase
transitions are considered (see, e.g., [3, 24]) as well as in the theory of fluid membranes with
free edges (cf [9, 36, 37]).

Later on, other two curvature models have been developed. The first of them is the
so-called bilayer-couple model suggested by Svetina and Žekš in [33] on the ground of
the bilayer-couple hypothesis [32] and the related work [34]. The second one is known as the
area-difference-elasticity model [4, 22, 42]. For the purposes of the present paper, however, it
is important to underline that all the curvature models mentioned above lead to the same set of
stationary shapes, determined locally by equation (2), since they differ only in global energy
terms (see [20, 22, 33]). Of course, the constants involved in this equation have different
meanings in different models.

For more than three decades, the study of the equilibrium shapes of the vesicles has
attracted much attention nevertheless to the best of our knowledge only a few analytic solutions
to equation (2) have been reported. These are the solutions determining: spheres and circular
cylinders [28], Clifford tori [29] and toroidal shapes (cf [20], chapter 8, section 5), circular
biconcave discoids [25], Delaunay surfaces [23, 26], nodoidlike and unduloidlike shapes [26],
several types of surfaces with constant squared mean curvature density and Willmore surfaces
(cf [16, 38, 43]) as well as cylindrical surfaces corresponding to p �= 0 [39, 40] and p = 0.
The latter case is exceptional since it coincides with the prominent Euler’s elastica whose
typical equilibrium shapes are known for a long time [21]. This problem has been studied for
more than three centuries in various contexts, see, e.g., the recent papers [6, 15, 18, 19, 45].
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Figure 1. A slice of the infinite generalized cylinder (left) and its intersection with the plane Y ≡ 0
(right). Here, t(s), ϕ(s) and θ(s) are the tangent vector, slope angle and the angle between the
position vectors x(0) and x(s), respectively.

The main goal of the present paper is to present in analytic form all solutions to the
membrane shape equation (2) determining cylindrical surfaces as well as to provide explicit
expressions for the corresponding position vectors. In a sense, it might be thought of as a
completion, from analytic point of view, of the works by Arreaga et al [2] and Capovilla et al
[8] where a purely geometric construction of the equilibrium shapes of closed planar loops
subject to the constraints of fixed length and enclosed area is presented.

2. Cylindrical equilibrium shapes

For cylindrical surfaces in R
3 whose directrices are plane curves � of curvature κ(s)

parametrized by their arclength s, the corresponding generatrices being perpendicular to
the plane the directrices � lie in (see figure 1), the general shape equation (2) simplifies and
reduces to the single ordinary differential equation

2
d2κ(s)

ds2
+ κ3(s) − μκ(s) − σ = 0, (3)

where

μ = Ih2 +
2λ

kc

, σ = −2p

kc

.

Indeed, using the standard formulae from the textbooks on classical differential geometry (see,
e.g., [10, 27]) one can easily find that for a cylindrical surface parametrized in the above way
H = (1/2)κ(s) and �H = (1/2) d2κ(s)/ds2 in addition to the relation K = 0. Substituting
the latter expressions into equation (2) one immediately obtains equation (3).

In what follows, we are interested in real-valued solutions κ(s) �= const of equation (3)
possessing smooth derivatives. Once such a solution is known, it is possible to recover
the embedding x(s) = (x(s), z(s)) ∈ R

2 of the corresponding directrix � in the plane R
2

(up to a rigid motion) in the standard manner. First, recall that the unit tangent t(s) =
(dx(s)/ds, dz(s)/ds) and normal n(s) = (−dz(s)/ds, dx(s)/ds) vectors to the curve � are
related to the curvature κ(s) through Frenet–Serret formulae [10, 27]

dt(s)

ds
= κ(s)n(s),

dn(s)

ds
= −κ(s)t(s). (4)

3
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Consequently, in terms of the slope angle ϕ(s) of the curve � (see figure 1), one has

κ(s) = dϕ(s)

ds
,

dx(s)

ds
= cos(ϕ(s)),

dz(s)

ds
= sin(ϕ(s)) (5)

and hence, the parametric equations of the curve � can be expressed by quadratures

x(s) =
∫

cos(ϕ(s)) ds, z(s) =
∫

sin(ϕ(s)) ds, (6)

where

ϕ(s) =
∫

κ(s) ds. (7)

Thus, the first problem to solve on the way to determining the cylindrical equilibrium shapes
of the fluid membranes is to find the solutions of equation (3) in analytic form.

Fortunately, equation (3) is integrable by quadrature since it falls into the class of equations
describing conservative systems with one degree of freedom [1]. Indeed, (3) can be regarded
as the equation of motion of a fictitious particle of unit mass whose kinetic, potential and total
energies are

T = 1

2

(
dκ

ds

)2

, U(κ) = 1

8
κ4 − 1

4
μκ2 − 1

2
σκ, E = T + U,

respectively. In this setting, κ is interpreted as the displacement of the particle while s plays
the role of the time. The total energy E of this system is conserved and hence(

dκ

ds

)2

= P(κ), P (κ) = 2E − 1

4
κ4 +

1

2
μκ2 + σκ (8)

holds on each continuous solution of equation (3), E being the value of its total energy.
Therefore, the solution of equation (3) can be reduced to the quadrature

s =
∫

dκ√
2(E − U(κ))

=
∫

dκ√
P(κ)

(9)

up to a shift of the independent variable s and change of its sign to the opposite one. Note that
equation (3) and its first integral (8) are invariant under the aforementioned transformations of
the variable s. Note also that for each solution κ = κ(s) of equation (3), relation (8) implies the
existence of a certain value of the variable s at which dκ/ds = 0 (this matter will be clarified
in detail at the beginning of the following section). Without loss of generality, this value may
be chosen to be zero due to the translational invariance of equation (3). So, hereafter we will
always chose dκ/ds = 0 at s = 0.

Moreover, the specific differential structure of equation (3) allows the integration in
expressions (6) to be avoided when σ �= 0. Below, one can find a simple alternative derivation
of this remarkable integrability property, first established in [2] (see also [8, 12]). Actually, a
direct computation shows that the following identity holds:(

2
d2κ(s)

ds2
+ κ3(s) − μκ(s) − σ

)
t(s) + 2

dκ(s)

ds

(
dt(s)

ds
− κ(s)n(s)

)

− (κ2(s) − μ)

(
dn(s)

ds
+ κ(s)t(s)

)

= d

ds

(
2

dκ(s)

ds
t(s) − (κ2(s) − μ)n(s) − σx(s)

)
(10)

4
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and hence, taking into account Frenet–Serret formulae (4), one can represent the position
vector x(s) of a plane curve of curvature κ(s) in the form

x(s) = 2

σ

dκ(s)

ds
t(s) − 1

σ
(κ2(s) − μ)n(s) + C,

where C is a constant vector, provided that κ(s) is a solution of equation (3) with σ �= 0.
Then, translating the origin so that x · t = 0 and x · n = −1/σ(κ2 − μ) when dκ/ds = 0,
which is always possible, one gets C = 0 and obtains, taking into account the definitions of the
tangent and normal vectors as well as the second and the third of relations (5), the following
expressions for the components of the position vector in terms of the curvature κ(s) and slope
angle ϕ(s)

x(s) = 2

σ

dκ(s)

ds
cos ϕ(s) +

1

σ
(κ2(s) − μ) sin ϕ(s),

z(s) = 2

σ

dκ(s)

ds
sin ϕ(s) − 1

σ
(κ2(s) − μ) cos ϕ(s).

(11)

Note, however, that the slope angle ϕ(s) still remains determined implicitly, via an integration
(7) of the curvature κ(s), which, so far, cannot be accomplished. Note also that formulae (8)
and (11) lead to the remarkable relation

r2(s) = 8E + μ2

σ 2
+

4κ(s)

σ
(12)

for the magnitude r(s) =
√

x2(s) + z2(s) of the position vector x(s) found in [2, 8].
For σ = 0, the situation is quite similar. In this case, identity (10) implies

dκ(s)

ds
t(s) − 1

2
(κ2(s) − μ)n(s) = C0, (13)

where C0 is a constant vector, provided that κ(s) is a solution of equation (3) with σ = 0 and
relations (4) hold. Now, choosing ϕ = dκ/ds = 0 at s = 0 and taking into account relation
(8), the definitions of the tangent and normal vectors as well as the second and the third of
relations (5), one can first see that C0 = (0,−(κ2(0) − μ)/2) �= 0 and then rewrite equality
(13) in the form

cos ϕ(s) = κ2(s) − μ

κ2(0) − μ
, sin ϕ(s) = − 2

κ2(0) − μ

dκ(s)

ds
. (14)

Consequently, formulae (6) and (14) imply

x(s) = 1

κ2(0) − μ

∫
κ2(s) ds − μs

κ2(0) − μ
, z(s) = − 2κ(s)

κ2(0) − μ
. (15)

Again, one integration remains to be done. This time, the square of the curvature κ(s) has to
be integrated.

Before proceeding with the derivation of the solutions of equation (3) using the quadrature
(9), it should be remarked that these equation have been regarded in a number of papers
(see [11, 35, 41, 44]) that have not been mentioned yet since they do not concern directly
the problem considered here. Closest to the subject of the present paper are [2, 8] where
equation (3) is introduced with the aim to study the equilibria of an elastic loop in the plane,
subject to the constraints of fixed length and enclosed area. In the three-dimensional case
considered here, each such loop determines a directrix � of a cylindrical surface whose mean
curvature satisfies the membrane shape equation. In the foregoing two papers, the authors have
succeeded in obtaining a purely geometric construction for determination of the curvature of
the loop passing through a given point of the plane without using explicit expressions for the
solutions of equation (3). Nevertheless, in our opinion, the knowledge of the solutions to this
equation in analytic form is of considerable interest for further exploration of the cylindrical
equilibrium shapes of the fluid membranes.
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3. Explicit analytic solutions

First, it should be remarked that the quadrature (9) can be easily expressed in terms of elliptic
integrals [13] or elementary functions by means of the roots of the polynomial P(κ) provided
that the following observations are taken into account.

Given a solution κ(s) of an equation of form (3) with coefficients μ and σ , let E be
the value of its total energy. Then, bearing in mind that μ, σ and E are real numbers, it is
clear that the corresponding polynomial P(κ) has at least two different real roots, otherwise
the function P(κ(s)) could not take different non-negative values, as required by relation
(8) and the assumptions concerning the type of solutions considered, since the coefficient at
the highest power κ4 of this polynomial is negative. Thus, in general, only two alternative
possibilities have to be considered, namely: (I) the polynomial P(κ) has two simple real roots
α, β ∈ R, α < β, and a pair of complex conjugate roots γ, δ ∈ C, δ = γ̄ ; (II) the polynomial
P(κ) has four simple real roots α < β < γ < δ ∈ R. In the first case, the polynomial P(κ)

is non-negative in the interval α � κ � β, while in the second one, it is nonnegative in the
intervals α � κ � β and γ � κ � δ.

It should be noted also that the roots α, β, γ and δ of the polynomial P(κ) can be
expressed explicitly through its coefficients μ, σ and E and vice versa. Indeed, after some
standard algebraic manipulations (cf [17], section 1.8), one can find the following expressions
for the roots of the polynomial P(κ):

−
√

ω

2
−

√
μ − σ

√
2

ω
− ω

2
, −

√
ω

2
+

√
μ − σ

√
2

ω
− ω

2
,

√
ω

2
−

√
μ + σ

√
2

ω
− ω

2
,

√
ω

2
+

√
μ + σ

√
2

ω
− ω

2
,

where

ω =
[
μ + 3

√
3(32σ 2 +

√
χ) − μ(μ2 + 2332E)

]2 − 233E

3 3
√

3(32σ 2 +
√

χ) − μ(μ2 + 2332E)
,

χ = 3{23E[(μ2 + 8E)2 − 322μσ 2] − σ 2(2μ3 − 33σ 2)}.
Then, one can denote properly each of the above expressions in accordance with the notation
introduced in cases (I) and (II), respectively. Simultaneously, by Vieta’s formulae one obtains

α + β + γ + δ = 0 (16)

due to the absence of a term with κ3 in the polynomial P(κ), and consequently

μ = 1
2 (α2 + β2 + γ 2 + αβ + αγ + βγ ), (17)

σ = − 1
4 (α + β)(α + γ )(β + γ ), (18)

E = 1
8αβγ (α + β + γ ). (19)

Now, we are in a position to express the arclength as a function of the curvature
representing the quadrature (9) via elliptic integrals or elementary functions in each of the
particular cases (I) and (II). Instead of this, however, taking the corresponding inverse functions
we prefer to give directly the curvature as a function of the arclength in terms of the roots
of the polynomial P(κ). Moreover, solving the integral (7), we give explicit formulae for
the corresponding slope angles as well. The explicit analytic expressions for the solutions of
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equation (3) and the corresponding slope angles can be found in theorem 1, for case (I), and
in theorem 2, for case (II).

Theorem 1. Given μ, σ and E, let the roots α, β, γ and δ of the respective polynomial P(κ)

be as in case (I), that is α < β ∈ R, γ, δ ∈ C, δ = γ̄ , and let η ≡ (γ − γ̄ )/2i. Then, except
for the cases in which (3α + β)(α + 3β) = η = 0, the function

κ1(s) = (Aβ + Bα) − (Aβ − Bα)cn(us, k)

(A + B) − (A − B)cn(us, k)
(20)

of the real variable s, where

A =
√

4η2 + (3α + β)2, B =
√

4η2 + (α + 3β)2, u = 1

4

√
AB, (21)

k = 1√
2

√
1 − 4η2 + (3α + β)(α + 3β)√

[4η2 + (3α + β)(α + 3β)]2 + 16η2(β − α)2
, (22)

takes real values for each s ∈ R and satisfies equation (3). This function is periodic if and
only if η �= 0 or η = 0 and (3α + β)(α + 3β) > 0, its least period is T1 = (4/u)K(k), and for
σ �= 0 its indefinite integral ϕ1 (s) such that ϕ1 (0) = 0 is

ϕ1(s) = Aβ − Bα

A − B
s +

(A + B)(α − β)

2u(A − B)
�

(
− (A − B)2

4AB
, am(us, k), k

)

+
α − β

2u

√
k2 + (A−B)2

4AB

arctan

(√
k2 +

(A − B)2

4AB

sn(us, k)

dn(us, k)

)
. (23)

In the cases in which (3α + β)(α + 3β) = η = 0, the function

κ2(s) = ζ − 4ζ

1 + ζ 2s2
, (24)

where ζ = α when 3α + β = 0 and ζ = β when α + 3β = 0, satisfies equation (3) for each
s ∈ R and its indefinite integral ϕ2 (s) such that ϕ2 (0) = 0 reads

ϕ2(s) = ζ s − 4 arctan (ζ s) . (25)

Proof. Let us begin with the simpler case (3α + β)(α + 3β) = η = 0. Here, on account of the
definition of η and relations (16)–(19), a straightforward computation shows that the function
(24) is the derivative of the function (25) and satisfies equation (3). The relation ϕ2 (0) = 0 is
obvious.

Next, let us exclude the cases in which (3α + β)(α + 3β) = η = 0. Now, the condition
α < β ∈ R, the definition of η and expressions (21) and (22) also imply that η,A,B, u,

k ∈ R, AB �= 0, u > 0 and 0 � k � 1. Hence, the function (20) is real-valued when s ∈ R.
Substituting the function (20) into equation (3) and taking into account relations (16)–(19),
one can easily verify that the latter equation is satisfied. When η �= 0, expression (22) implies
0 < k < 1 and therefore the function (20) is periodic because the function cn(us, k) is
periodic, with least period T1. When η = 0 but (3α + β)(α + 3β) �= 0 two alternative cases are
to be considered, namely (3α + β)(α + 3β) > 0 and (3α + β)(α + 3β) < 0. In the first case,
expression (22) leads to k = 0, which means that cn(us, k) = cos(us) and hence the function
(20) is periodic again. However, if (3α + β)(α + 3β) < 0, then expression (22) implies k = 1
meaning that cn(us, k) = sech(us), and hence the function (20) is not periodic. Thus, having
considered all possible cases, we may conclude that the function (20) is periodic if and only

7
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if η �= 0 or η = 0 and (3α + β)(α + 3β) > 0. Finally, differentiation of expressions (23) with
respect to the variable s yields (20). The relation ϕ1 (0) = 0 is obvious. �

Theorem 2. Given μ, σ and E, let the roots α, β, γ and δ of the respective polynomial P(κ)

be as in case (II), that is α < β < γ < δ ∈ R. Consider the functions

κ3(s) = δ − (δ − α)(δ − β)

(δ − β) + (β − α)sn2(us, k)
, (26)

κ4(s) = β +
(γ − β)(δ − β)

(δ − β) − (δ − γ )sn2(us, k)
, (27)

of the real variable s, where

u = 1

4

√
(γ − α)(δ − β), k =

√
(β − α)(δ − γ )

(γ − α)(δ − β)
. (28)

Then, both functions (26) and (27) take real values for each s ∈ R and satisfy equation (3),
they are periodic with the least period T2 = (2/u) K(k) and their indefinite integrals ϕ3 (s)

and ϕ4 (s), respectively, such that ϕ3 (0) = ϕ4 (0) = 0 are

ϕ3(s) = δs − δ − α

u
�

(
β − α

β − δ
, am(us, k), k

)
, (29)

ϕ4(s) = βs − β − γ

u
�

(
δ − γ

δ − β
, am(us, k), k

)
. (30)

Proof. It is easy to see that the condition α < β < γ < δ ∈ R and expressions (28) also
imply that u, k ∈ R, u > 0 and 0 < k < 1. Therefore, both functions (26) and (27) are
real-valued when s ∈ R. Substituting each of the above functions into equation (3) and
taking into account relations (16)–(19), one can easily verify that they satisfy it. Evidently,
these functions are periodic due to the fact that the function sn2(us, k) is periodic, with least
period T2 = (2/u) K(k), since u > 0 and 0 < k < 1. Finally, differentiation of expressions
(29) and (30) with respect to the variable s yields (26) and (27), respectively. The relations
ϕ3 (0) = ϕ4 (0) = 0 are obvious. �

Suppose now that σ = 0. Under this assumption, in case (I), formulae (16) and (18)
imply β = −α > 0. Then, according to theorem 1, B = A = 2

√
η2 + α2 and so

κ1(s) = α cn(us, k), u = 1

2

√
η2 + α2, k =

√
α2

η2 + α2
, (31)

cf formulae (20)–(22). Consequently∫
κ2

1 (s) ds = 2
√

α2 + η2 E(am(us, k), k) − η2s. (32)

Note also that formulae (31) and (17) imply

κ1(0) = α, μ = 1
2 (α2 − η2). (33)

In case (II), the assumption σ = 0 and formulae (16) and (18) imply δ = −α > 0, γ =
−β > 0. Hence, according to theorem 2, cf formulae (26)–(28), we have

u = −1

4
(α + β) = 1

4
(δ + γ ) , k = −β − α

β + α
= δ − γ

δ + γ
,

8
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(a) (b) (c) (d)

Figure 2. Directrices of some closed cylindrical equilibrium shapes whose curvatures are solutions
to equation (3) of form (20) with σ = 1 and: (a) μ = 1.908, E = 0.146; (b) μ = 0, E = 0.211;
(c) μ = 1/3, E = 0.407 and (d) μ = 1/3, E = 0.563.

and

κ3(s) = α
1 − k sn2(us, k)

1 + k sn2(us, k)
, κ4(s) = γ

1 + k sn2(us, k)

1 − k sn2(us, k)
.

Then, using Gauss’s transformation ũ = u (1 + k) , k̃ = 2
√

k/(k + 1), we obtain

κ3(s) = α dn(ũs, k̃), ũ = −1

2
α, k̃ = − 1

α

√
α2 − β2, (34)

κ4(s) = γ
1

dn(ũs, k̃)
= −α dn(ũs + K(k̃), k̃) = −κ3(s + ũ−1K(k̃)). (35)

Now, observing relation (35), we arrive at the conclusion that Euler’s elastic curves of
curvatures κ3(s) and κ4(s) determined by formulae (34) and (35), respectively, coincide
up to a rigid motion in the plane R

2. Therefore, to complete the present task it suffices to
consider only the curves of curvature given by formula (34). In this case, we have∫

κ2
3 (s) ds = −2αE(am(ũs, k̃), k̃) (36)

and

κ3(0) = α, μ = 1
2 (α2 + β2). (37)

due to relations (34) and (17).
Thus, having obtained in explicit form the solutions of equation (3), i.e., the curvatures,

the corresponding slope angles and the integrals of the squared curvatures (in the cases in
which σ = 0), we have completely determined in analytic form the corresponding directrices
� (up to a rigid motion in the plane R

2) through the parametric equations (11) when σ �= 0
or (15), with the supplementary relations (31)–(33) or (34), (36) and (37), when σ = 0.
Several examples of directrices of cylindrical equilibrium shapes corresponding to solutions
to equation (3) of form (20), (26) or (27) are presented in figures 2 and 3 for σ �= 0 and in
figure 4 for σ = 0.

4. Closure conditions

Hereafter, we are interested in directrices � that close up smoothly meaning that there exists a
value L of the arclength s such that x(0) = x(L) and t(0) = t(L). The later property of such
a smooth closed directrix � and the definition of the tangent vector imply that there exists an
integer m such that ϕ(L) = ϕ(0) + 2mπ where ϕ(s) is the corresponding slope angle. Since

9
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(a) (b) (c)

Figure 3. Directrices of some closed cylindrical equilibrium shapes whose curvatures are solutions
to equation (3) of forms (26) (top) and (27) (bottom) with μ = 3, σ = 1 and: (a) E = 0.085 0056,
(b) E = 0.084 9733, (c) E = 0.085 0046.

Figure 4. Several typical equilibrium shapes of Euler’s elastica related to periodic and non-periodic
solutions of equation (3) with σ = 0 of forms (31) and (34).

throughout this paper we always choose ϕ(0) = 0, this means that the condition t(0) = t(L)

implies ϕ(L) = 2mπ .
Under the above assumptions, expressions (11) show that

x(0) =
(

2

σ

dκ(s)

ds

∣∣∣∣
s=0

,− 1

σ
(κ2(0) − μ)

)
, x(L) =

(
2

σ

dκ(s)

ds

∣∣∣∣
s=L

,− 1

σ
(κ2(L) − μ)

)
.

Consequently, the equality x(0) = x(L) yields

dκ(s)

ds

∣∣∣∣
s=L

= dκ(s)

ds

∣∣∣∣
s=0

, κ(L) = ±κ(0),

which, on account of relation (8), implies that L is a period of the curvature κ(s), that is
L = nT where n is a positive integer and T is the least period of the function κ(s). Since
ϕ(nT ) = nϕ(T ), as follows by formula (7), then 2mπ = ϕ(L) = ϕ(nT ) = nϕ(T ) and hence

ϕ(T ) = 2mπ

n
. (38)

Thus, in the cases when σ �= 0, relation (38) is found to be a necessary condition for a directrix
� to close up smoothly. Apparently, it is a sufficient condition as well.

Straightforward computations lead to the following explicit expressions

ϕ1(T1) = 4(Aβ − Bα)

u(A − B)
K(k) + 2

(A + B)(α − β)

u(A − B)
�

(
− (A − B)2

4AB
, k

)
,

10
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ϕ3(T2) = 2δ

u
K(k) + 2

α − δ

u
�

(
α − β

δ − β
, k

)
,

ϕ4(T2) = 2β

u
K(k) + 2

γ − β

u
�

(
γ − δ

β − δ
, k

)
,

for the angles of forms (23), (29) and (30), respectively. These expressions and the closure
condition (38) allow to determine whether a curve of the curvature (20), (26) or (27) closes up
smoothly or not.

In the cases when σ = 0, relations (14) and (15) show that

dκ(s)

ds

∣∣∣∣
s=L

= 0, κ (L) = κ(0), x (L) − x(0) = 0

are the necessary and sufficient conditions for the respective directrices � to close up smoothly.
Let us recall that relations (14)–(15) were derived assuming ϕ = dκ/ds = 0 at s = 0. The
aforementioned conditions mean first that L = nT where n is a positive integer and T is the
least period of the function κ(s) and, consequently, that

μT =
∫ T

0
κ2(s) ds, (39)

in view of the first of relations (15) and due to the fact that κ(s) is a periodic function. Now,
using formulae (32) and (36), one can easily see that∫ T1

0
κ2

1 (s) ds = 8
√

α2 + η2 E(k) − η2T1,

∫ T2

0
κ2

3 (s) ds = −4α E(k̃)

and then, expressing the coefficient μ from formulae (33) or (37), to rewrite the closure
condition (39) for the curves of the curvatures given by formulae (31) or (34) in the form

2E(k) − K(k) = 0

or

2E(k̃) − (2 − k̃2)K(k̃) = 0,

respectively.
An interesting property of the curves of the curvatures κ3(s) and κ4(s) is observed in the

cases in which σ �= 0 (see figure 3). Namely, if one of these curves closes up smoothly, then so
does the other one. To prove this let us first note that the solutions κ3(s) and κ4(s) correspond
to case (II) when the polynomial P(κ) has four real roots. Without loss of generality, these
roots can be written in the form

α = −3q − v − 2w, β = q − v − 2w, γ = q − v + 2w, δ = q + 3v + 2w, (40)

where q, v and w are three arbitrary positive real numbers. The main advantage of this
parametrization is that it preserves the order of the roots of the polynomial P(κ), i.e.,
α < β < γ < δ for any choice of the parameters q, v and w, which allows one to deal
freely with them. Using these parameters, it is easy to find that

∂ψ

∂q
= ∂ψ

∂v
= ∂ψ

∂w
= 0, ψ = ϕ4(T2) − ϕ3(T2),

meaning that ψ = const. This constant can be determined by evaluating the function ψ for
any values of the parameters q, v and w, say q = v = w, which gives

ϕ4(T2) − ϕ3(T2) = 4π. (41)

This relation and the closure condition (38) do imply that the foregoing two curves close up
simultaneously.

11
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5. Self-intersection

In what concerns the vesicle shapes, of special interest are solutions to equation (3) with
σ �= 0 that give rise to closed non-self-intersecting (simple) curves. A sufficient condition for
such a closed curve to be simple is μ < 0, which is discussed in [8]. It is also mentioned
therein that the closed curves satisfying condition (38) with m �= ±1 or n = 1 are necessarily
self-intersecting. In this section, the case μ > 0 is considered and several new sufficient
conditions are presented for a closed curve of the foregoing type meeting a closure condition
of form (38) with m = ±1 and n � 2 to be simple or not.

It is convenient to treat the problem of self-intersecting in terms of the magnitude r(s)

of the position vector x(s) and the angle θ(s) between the position vectors x(0) and x(s).
Assuming that the angle θ(s) is positive when measured counterclockwise from the vector
x(0) to the vector x(s) and negative otherwise and taking into account expressions (11) we
obtain the relations

x(s) = −sgn(z(0))r(s) sin θ(s), z(s) = sgn(z(0))r(s) cos θ(s), (42)

dθ(s)

ds
= κ2(s) − μ

σr2(s)
. (43)

The following observation is crucial for the rest of the present study.

Lemma 1. Let � be a smooth closed curve whose curvature κ(s) is a solution of equation (3)
with σ �= 0 of form (20), (26) or (27). Let T be the least period of the function κ(s) and let the
corresponding slope angle meet a closure condition of form (38) with m = ±1 and n � 2, i.e.,
ϕ(T ) = ±2π/n. Then, the curve � is self-intersecting if and only if there exists s0 ∈ (0, T /2)

such that θ(s0) = θ(0) or θ(s0) = θ(T /2).

Proof. First, let us recall that each such curve has n axis of symmetry (cf [2, 8]), any position
vector x(iT /2), i = 0, 1, . . . , 2n being along one of them. Consequently, any point of the
curve whose position vector is collinear with one of the foregoing vectors lies on an axis of
symmetry of the curve �. Note also that on account of formulae (23), (29) or (30) the closer
condition may be written in the form ϕ(T /2) = ±π/n. It should be mentioned as well that
formulae (20), (26) and (27) imply dκ/ds = 0 at s = iT/2.

Let the curve � be such that θ(s0) = θ(0) or θ(s0) = θ(T /2) at some s0 ∈ (0, T /2).
Then, expressions (11) and (42), and the closer condition imply θ(T /2) = ±(π/n + lπ),
where l is an integer, meaning that the position vector x(s0) is along a certain axis of symmetry
of the curve �. Therefore this curve self-intersects since it passes through two different points
lying on one and the same axis of symmetry.

Next, suppose that the curve � is such that θ(s0) �= θ(0) and θ(s0) �= θ(T /2) for each
s0 ∈ (0, T /2). Then, the same holds true in the next interval (T /2, T ) since the curve �

is symmetric with respect to the axis corresponding to the angle θ(T /2), that is along the
vector x(T /2), and so on up to the last interval (nT − T/2, nT ). In this way, we arrive at
the conclusion that the considered curve does not pass twice through any one of its axes of
symmetry and therefore it is simple because it is simple in the interior of each of the foregoing
intervals too as is evident from relation (12). �

Theorem 3. Let � be a smooth closed curve, which meets the assumptions of Lemma 1. Then:

(i) the curve � is simple if κ2(s) − μ �= 0 for s ∈ [0, T /2];
(ii) the curve � is self-intersecting if the equation κ2(s) − μ = 0 has exactly one solution for

s ∈ [0, T /2].

12
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Proof.

(i) The condition κ2(s) − μ �= 0 and expression (43) imply dθ(s)/ds �= 0 for each
s ∈ [0, T /2], meaning that θ(s) is a strictly increasing or decreasing function in this
interval. Consequently, there does not exist s0 ∈ (0, T /2) such that θ(s0) = θ(0) or
θ(s0) = θ(T /2), and hence, by virtue of Lemma 1, the corresponding curve � is simple.

(ii) Let sμ be the only value in [0, T /2] such that κ2(sμ) − μ = 0. First, let sμ ∈ (0, T /2).
Since κ(s) is strictly increasing in this interval, the signs of function κ2(s) − μ in the
intervals (0, sμ) and (sμ, T /2) are different. Then, expression (43) implies that the
function θ(s) has an extremum at sμ. Suppose, θ(s) has a maximum at sμ. Then,
when s increases from 0 to T/2, the function θ(s) increases from θ(0) = 0 to a certain
value θ(sμ) = θmax > 0, and after that, decreases from θmax to θ(T /2). If θ(T /2)

is negative, then there exists s1 ∈ (sμ, T /2) such that θ(s1) = θ(0) meaning that the
curve � is self-intersecting. If θ(T /2) is positive, then there exists s2 ∈ (0, sμ) such
that θ(s2) = θ(T /2) meaning that the curve � is self-intersecting again. The case
when θ(s) has a minimum at sμ is similar. Next, let sμ = 0 or sμ = T/2. Then,
expressions (11) imply x(0) = x(T ) = 0 or x(T /2) = x(3T/2) = 0, respectively. On
the other hand, t(0) �= t(T ) in the first case because ϕ(T ) = 2π/n, while in the second
case t(T /2) �= t(3T/2) since ϕ(T /2) = π/n and ϕ(3T/2) = 3π/n. Therefore, the
corresponding curve � is self-intersecting. �

Corollary 1. Under the assumptions of Lemma 1, the curve � is self-intersecting if its
curvature κ(s) is such that the respective polynomial P(κ) has only real roots.

Proof. In case (I), according to theorem 1, real roots are achieved only if η = 0 meaning
that γ = δ = −(α + β)/2. Then, formula (17) implies (α2 − μ)(β2 − μ) < 0 provided that
(3α + β)(α + 3β) > 0 which is the necessary and sufficient condition for the periodicity of
the curvature κ1(s) when η = 0 (see theorem 1). Consequently, the equation κ2

1 (s) − μ = 0
has only one solution for s ∈ [0, T /2] since κ1(0) = α and κ1(T /2) = β. Then, according to
theorem 3 (ii), the curve is self-intersecting.

In case (II), the roots can be written in the form (40) and the angles ϕ3(T ) and ϕ4(T ) may
be thought of as functions of the parameters q, v and w. Differentiating relation (41) with
respect to the parameter w, one obtains

dϕ3(T )

dw
= dϕ4(T )

dw
= v2 − q2

w(q + v + w)
√

(q + w)(v + w)
E(k).

The function E(k) > 1 since 0 < k < 1 and therefore the above derivatives are positive when
v > q, negative when v < q and equal to zero when v = q. If v > q, then ϕ3(T ) and ϕ4(T )

are increasing functions of the variable w and meet the inequalities

ϕ3(T ) < −2π, ϕ4(T ) < 2π

since

lim
w→∞ ϕ3(T ) = −2π, lim

w→∞ ϕ4(T ) = 2π.

The first inequality implies that if the curve corresponding to the angle ϕ3(T ) closes up, then
it necessarily self-intersects since m < −1 in the respective closure condition (38). Consider
now the curve, corresponding to ϕ4(T ). It is easy to see that

(γ 2 − μ)(δ2 − μ) = 4[(q + v)2 + 4vw][q2 − 3v2 − 2qv − 4vw] < 0

since in this case q2 − 3v2 < 0. Consequently, the equation κ2
4 (s) − μ = 0 has only one

solution for s ∈ [0, T /2] since κ4(0) = γ and κ4(T /2) = δ. Therefore, according to theorem

13
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3 (ii), the curve corresponding to ϕ4(T ) is self-intersecting. Thus, in the case v > q both
curves are self-intersecting. Similar arguments hold in the case v < q and lead to the same
conclusion. Finally, if v = q, then the functions ϕ3(T ) and ϕ4(T ) do not depend on w.
Evaluating them at q = w, one obtains

ϕ3(T ) = −2π, ϕ4(T ) = 2π

and hence the two curves are self-intersecting as well. �

6. Concluding remarks

In this paper all solutions to the membrane shape equation (2) determining cylindrical surfaces
are presented in analytic form in theorems 1 and 2. Explicit analytic expressions for the
corresponding slope angles in the case σ �= 0 are also given in these theorems. Explicit
expressions for the integrals of the squared curvatures are obtained in the case σ = 0. In this
way, we have completely determined in analytic form the corresponding directrices � (up to
a rigid motion in the plane R

2) through the parametric equations (11) or (15) depending on
whether σ �= 0 or σ = 0. The necessary and sufficient conditions for the foregoing cylindrical
surfaces to be closed are derived in section 4. One necessary and sufficient and three sufficient
conditions for their directrices to be simple or not are presented in section 5. These conditions
show that simple directrices could be achieved only in case (I), i.e., when the polynomial P(κ)

has two simple real roots and a pair of complex conjugate roots.
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